Centre for High Performance Computing 2025 National Conference

Contribution ID: 352 Type: Talk

A computer architecture targetting RAM chips

Monday, 1 December 2025 12:00 (20 minutes)

computer architecture targetting RAM chips

Highly parallel computation algorithms on structured data can remain inside the memory chip, removing the need to pass all the data across a bus to a CPU chip and back.

This can save a great deal of power for very little added complexity of the RAM chip itself.

As a proof of concept, this computer architecture is implemented inside an FPGA, mapping the FPGA block RAM to a 1024 bit square array, with 1024 bit serial processors, one for each row.

Each processor consists of a single bit full adder, a little more logic, and a 6 bit stack.

All processors are controlled, SIMD fashion, by a sequencer.

Variable bit width math functions add, subtract, multiply and divide are implemented. As support operations there are also 8, 16 and 32 bit transpose, floating point to fixed point conversion, and vice versa.

All these operations are mapped onto the bit-serial processor. Thus all 1024 rows are processed at the same time.

To demonstrate how it might be used, a prime number finding algorithm is implemented, which is trivial enough for the audience to understand the workings of the bit serial engine, and a single precision floating point matrix multiply to demonstrate the architectures utility.

Were this to be realised within a 4 Gbit RAM chip, there would be space for a million processors, each with 4k bits of storage - easily sufficient for the matrix multiply algorithm used in the FPGA demonstrator.

The FPGA demonstrator is for algorithm research - as very few present day problems have solutions targetting millions of SIMD processors.

Presenting Author

Andy Rabagliati

Email

Student or Postdoc?

Masters

Institute

Cabridge University

Registered for the conference?

No

CHPC User

No

CHPC Research Programme

Workshop Duration

Primary author: Mr RABAGLIATI, Andy (None)

Presenter: Mr RABAGLIATI, Andy (None)
Session Classification: HPC Technology

Track Classification: Machine Learning and other AI techniques