7/4/2019 Tutorial 3 (2019) - ACE Lab

Tutorial 3 (2019)

From ACE Lab

Follow the instructions below to complete this tutorial. The tutors are available to answer valid, well thought
out questions. The tutors will not touch your keyboard or complete the tutorials for you. Answer questions
provided in a text document and email to dmacleod@csir.co.za. Pay special attention to the instructions in red,
you will need to demonstrate this to a tutor in order to complete that task.

Part 0 - Firewalld Fix

Firewalld is a firewall management solution available for many Linux distributions which acts as a frontend for
the iptables packet filtering system provided by the Linux kernel. You've used this tool to facilitate the
configuration of a NAT (enabling your internal network to get passthrough to the external network via you
headnode).

If you have trouble resolving google.com but are able to ping 8.8.8.8. You most probably have a conflict on
your firewall rules blocking you. Follow these instructions to fix it on you headnode. Notes: 1. Ensure that
firewalld is running on you headnode

--

systemctl restart firewalld
systemctl status firewalld

__

should give you output without errors
2. Add your public interface to trusted zone to bypass the conflict.

--

i trusted !
i interfaces: ens3 '

Part 1 - HPL Benchmark

The High Performance LINPACK (HPL) benchmark is used to measure a system's floating point number
processing power. The resulting score in, Floating Point Operations Per Second (FLOPS), is often used to
roughly quantify the computational power of an HPC system. HPL requires math libraries to perform its
floating point operations, and an MPI installation for communication in order to execute in parallel across
multiple CPU cores (and hosts).

Important tip: if your compile fails, you should reset to a clean start point with 'make clean'.

1. Install OpenMPI and Basic Linear Algebra Subprograms (BLAS) library.

https://www.ace.chpc.ac.za/acewiki/index.php/Tutorial_3_(2019) 1/5

7/4/2019 Tutorial 3 (2019) - ACE Lab

__

Create a new bash session to load the module system you just installed.

2. Download and extract HPL from

__

__

note that the Makefile suffix is used as the architecture identifier.

4. Edit the path of the build directory in your Makefile:

! LAdir = Jusr/lib64/atlas
i LAlib = $(LAdir)/libtatlas.so $(LAdir)/libsatlas.so

__

__

QUESTION 1:
Explain the difference between shared and distributed memory systems

NB: by default the the OpenMPI you installed is not sourced in your environment (SPATH &

SLD LIBRARY_PATH) by default. Test this with 'which mpicc'. The compilation will fail if the mpicc
command is not available, resulting in the error: "mpicc: Command not found". To add OpenMPI to your
environment you need to load the appropriate module. Check which modules are available with

__

QUESTION 2:
Explain the difference between static and dynamic linked libraries

https://www.ace.chpc.ac.za/acewiki/index.php/Tutorial_3_(2019)

2/5

http://www.netlib.org/benchmark/hpl/

7/4/2019 Tutorial 3 (2019) - ACE Lab
7. Compile HPL

3
QU
~
0]
VU
3
(o}
>
1}
A
VU
3
(o}
>
v

to confirm that the compilation completed successfully, check that the xhpl executable was produced in
bin/<arch>

8. The HPL.dat file defines how the HPL benchmark solves a large dense linear array of double precision
floating point numbers. Therefore selecting the appropriate parameters in this file can have a massive effect on
the FLOPS you obtain.

The most important parameters are:
N: defines the length of one of the sides of the 2D array to be solved.
Therefore, problem size « runtime o« memory usage « <N>2.
For best performance N should be a multiple of NB.
NB: defines the block (or chunk) size into which the array is divided.
The optimal value is determined by the CPU architecture such that the block fits in cache (Google).
P&Q: define the domains (in two dimensions) for how the array is partitioned on a distributed memory system.
Therefore P*Q = MPI ranks.

QUESTION 3:
What is a FLOP and how does it relate to the performance of supercomputers?

9. Execute HPL on your headnode

3
o
i
pan
c
=]
|
>
o
A
[a]
o
3
(]
%]
v
~
x
>
o
—

At this point you are ready to run HPL on your cluster, however you only have one compute node currently. Its
time to deploy a second compute node in OpenNebula. Ask Israel or Matthew for assistance. Once your two
compute nodes have been successful deployed, are accessible from the headnode, and added to SLURM you
can continue with running HPL across multiple nodes.

10. Create a SLURM submission script to run your benchmark on your two compute nodes. The script should
look as follows:

#!/bin/bash

#SBATCH --ntasks <MPI_RANKS>
#SBATCH -N <NODES>

#SBATCH -t 02:00:00

#SBATCH --job-name=hpl_benchmark

mpirun /path/to/xhpl

SLURM will populate the appropriate MPI parameters based on the resources you requested, so specifying
ranks (-np) is not required.

11. Submit your job to SLURM:

wn
o
Y]
+
[a}
=
A
wn
(g}
=
[l
o
~+
v

:
1
i squeue
:
:

https://www.ace.chpc.ac.za/acewiki/index.php/Tutorial_3_(2019) 3/5

7/4/2019 Tutorial 3 (2019) - ACE Lab

__

By default, SLURM will store the job output to a log file 'slurm-<job_id>.out'. Check the result of your
benchmark here.

Part 2 - Optimising HPL

You now have a functioning HPL benchmark. However, using math libraries (BLAS, LAPACK, ATLAS) from
a repository (yum) will not yield optimum performance, because these repos contain generic code compiled to
work on all x86 hardware. Code compiled specifically for HPC hardware can use instruction sets like AVX,
AVX2 and AVXS512 (if available) to make better use of the CPU. A (much) higher HPL result is possible if you
compile your BLAS library (such as ATLAS, GOTOBLAS, OpenBLAS or Intel MKL) from source on the
hardware you intend to run the code on.

The VM's that make up your cluster are not the same architecture. In order to compile high performance codes
for your compute nodes, you need to perform the next steps on your compute node.

1. Download OpenBLAS source code and compile
2. Recompile HPL using this new BLAS implementation (edit LAdir)
3. Rerun HPL on your cluster

It is useful to know what the theoretical FLOPS performance (RPeak) of your hardware is when trying to
obtain the highest benchmark result (RMax). RPeak can be derived from the formula:

..

__

Newer CPU architectures allow for 'wider' instrument sets which execute multiple instructions per CPU cycle.
The table below shows the floating point operations per cycle of various instruction sets:

SSE4.2 4
AVX 8
AVX2 |16
AVX512 32

You can determine your CPU model as well as the instructions supported on your compute node with the
command

--

__

For model name, you should see something like "... Intel Xeon E5-26.....". If instead you see "QEMU...", please
call a tutor.

You can determine the maximum and base frequency of your CPU model on the Intel Ark website. Because
HPL is a demanding workload, assume the CPU is operating at its base frequency. You should have everything
you need to calculate the RPeak of your cluster. Typically an efficiency of at least 75% is considered adequate
for Intel CPUs (RMax / RPeak > 0.75).

QUESTION 4:
What is the combined theoretical FLOPS (RPeak) of your two 8 core compute nodes?

https://www.ace.chpc.ac.za/acewiki/index.php/Tutorial_3_(2019) 4/5

7/4/2019 Tutorial 3 (2019) - ACE Lab

Part 3 - HPC Challenge

HPC Challenge (or HPCC) is benchmark suite which contains 7 micro-benchmarks used to test various
performance aspects of your cluster. HPCC includes HPL which it uses to access FLOPs performance. Having
successfully compiled and executed HPL, the process is fairly straight forward to setup HPCC (it uses the same
Makefile structure).

1. Download HPCC from https://icl.utk.edu/hpcc/software/index.html
2. Extract then move into the hpl/ subdirectory.
3. Copy and modify the Makefile as your did for Part 1. Also, add '-std=c99' to the 'CCFLAGS' line.

4. Compile HPCC from the base directory using

--

__

5. Edit the hpccinf.txt file (same as HPL.dat)
6. HPCC replies on the input parameter file "hpccinf.txt' (same as HPL.dat). Run HPCC as you did HPL
7. Download this script with formats the output into a readable format https://tinyurl.com/y65p2vv5

8. Run the script with

..

__

to see your benchmark result, your HPL score should be similar to your standalone HPL.

Retrieved from ‘https://www.ace.chpc.ac.za/acewiki/index.php?title=Tutorial 3 (2019)&oldid=1670’

= This page was last modified on 4 July 2019, at 14:41.
= This page has been accessed 95 times.

https://www.ace.chpc.ac.za/acewiki/index.php/Tutorial_3_(2019) 5/5

https://icl.utk.edu/hpcc/software/index.html
https://tinyurl.com/y65p2vv5
https://www.ace.chpc.ac.za/acewiki/index.php?title=Tutorial_3_(2019)&oldid=1670

