

Performance Analysis of an HPC Implementation for Large-Scale Propagation Prediction

December 2017

Johan Havenga

School for Electrical, Electronic and Computer Engineering

North-West University, Potchefstroom Campus

Presentation Outline

- Background
- Spectrum Observatory Architecture
- Purpose and Problem Statement
- Methodology
- Results
- TVWS Heat Maps
- Conclusion

- Need for Secondary Spectrum Access
 - More people means more need for connectivity
 - RF spectrum resources are limited
 - RF spectrum is not used efficiently
 - 470-790 MHz assigned for Terrestrial TV broadcasting by ICASA
 - Secondary Access is a viable solution, especially in TV bands
- TV White Space
 - TVWS refers to spectrum that is not being utilised at the moment in the part of the spectrum originally assigned to TV broadcasting networks.
- Determination of White Space
 - White Space is time and location dependent
 - Methods
 - Spectrum Sensing
 - Geo-location Database

Spectrum Occupancy for 470 – 790 MHz of Dreyersdal, Cape Town on 08/08/2017

Spectrum Observatory Architecture

- Computing is a big concern
 - White space recalculations done every
 - Week (FCC)
 - 6 Months (Ofcom)
 - A lot of fine grained computations are involved
 - Especially true for models using terrain data

- Solutions:
 - GPGPU Programming
 - Using GPU's for general processing.
 - Cloud Computing
 - The usage of a network of remote servers hosted on the Internet to process data, rather than a local server or a personal computer.
 - High Performance Computing Cluster
 - Multiple high performance computing nodes used for large scale multiprocessor computing.

Purpose and Problem Statement

Problem Statement

Do a performance analysis of using an HPC to do Large-Scale Propagation Prediction

• Purpose

- Allow for faster generation of propagation prediction data
- Leading to faster TVWS identification
- Enabling faster TVWS research
- Moving the time it takes to generate results for weeks/months to hours/minutes.
- Building block in moving WS to other parts of RF Spectrum

Methodology: CHPC Speed-up

Results: CHPC Speed-up

Methodology: TAU Analysis of ITM P2P

Results: TAU Analysis of ITM P2P

Time %	Exclusive msec	Inclusive total msec	#Calls	Name
100,0	29	35:15,784	1	.TAU application
100,0	1,392	35:15,754	1	main()
85,7	30,684	30:13,981	54720	get_GLOBE_pfl()
84,3	11:12:851	29:43,234	4,3776E+07	GLOBE_elevation()
52,4	18:29,601	18:29,601	1,0579E+08	Get_GLOBE_data()
13,9	4:54,596	4:54,596	3	MPI_Barrier()

Results: TAU Analysis of ITM P2P

	Before	After
Transmitters	2325	2325
CPUs	240	240
Wall Time (hh:mm:ss)	05:26:29	00:04:22
CPU Time (hh:mm:ss)	1291:06:02	17:17:00

Results before and after **path extraction improvements**

Results: ITMP2P Speed-up

TVWS Heat Map: ITM Area mode

TVWS Heat Map: ITM P2P mode

Conclusion

- Accelerated Propagation Predictions using HPCC
- Improvements done for terrain dependant models
- Using the HPCC leads to faster TVWS identification
- This is possible through the CHPC

Thank you

