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▪ Focus on Deep Learning (DL) as a very successful and storage-intensive AI 

subdomain

▪ Characterizing DL storage access patterns

▪ Similarities and differences between HPC & DL

▪ Why is the DL storage problem often noticed too late

▪ How to avoid DL storage problems

▪ Typical storage requirements

▪ Typical storage benchmarks 

▪ What’s next for DL storage

Overview
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Deep Learning: Teaching a Computer to recognize Objects

• Animals are easy to recognize for humans, but difficult for computers

• Too many different variations to manually program an algorithm that 

detects e.g. dogs

• To learn what a dog is, a computer needs to see millions of different dogs 

in all colors, shapes and sizes. This is called training.

• The result of the training is a model, which contains the characterization of 

the dog
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The 3 high-level phases of Deep Learning

Data preparation
• “Normalize data“: Use same color palette, 

resolution, rotation, annotate features, reduce to 
relevant objects, …

Training
• Typically based on GPUs for their high 

computational parallelism
• Look at millions of interesting “objects“ again and 

again
• E.g. in different order, different rotation etc.
• And to continuously improve the quality of the 

model
• Very storage-intensive, so our main focus

Inference
• Show something to the computer to check if it 

recognizes an object of interest after the training
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HPC vs DL: Similarities and Differences

HPC Cluster

AI Cluster

Similarities between HPC & AI/DL

• One host is not enough, so scale out through 

clustering with high-speed (RDMA) network

• Shared storage, so all nodes have access to same 

data

• Coordinated resource sharing

Differences between HPC & AI/DL

• HPC:

• Strong scale out (100s to 100,000s of nodes);

• High streaming read+write bandwidth

• AI:

• Scale up (supercomputer in a box), then scale out

• Primarily read intensive

• Lots of small and highly concurrent storage 

accesses
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A closer Look at the Storage Specifics for DL

What do the differences from classic HPC mean?

• Scale up (supercomputer in a box), then scale out:
• From the storage perspective, each client has 

much higher demands than before

• Primarily read intensive:
• HPC storage concepts like “Burst buffers” don’t 

work for AI, because they are for writes, not 
reads

• Lots of small and highly concurrent accesses to 
shared storage:

• Spinning disks fail by design, because they hate 
small and highly concurrent reads

• This makes NVMe drives the standard 
technology for DL storage 

• Making NVMe performance available over the 
network is the new storage industry challenge

Nvidia DGX A100

NVMe Drive Examples
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Why is the Storage Problem often recognized too late

• Initial Deep Learning testing/evaluation is 
usually done on small systems
• E.g. a single Nvidia DGX or a few compute 

nodes with internal flash storage
• Training dataset is “local” inside the 

compute nodes

• For more serious DL, scale-out is required and 
keeping local copies of the data inside the 
compute nodes is no longer feasible
• Network attached NVMe storage often has 

different performance characteristics 
compared to local/internal NVMe storage

• Specifying/designing such storage systems 
requires understanding of the special DL 
demands

Single GPU Server with internal NVMe
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Typical Deep Learning Storage Requirements

• Shared network storage system specialized for:

• High read IOPS for lots of small random accesses

• Often: High read IOPS for lots of small files

• Ability to scale to higher performance and capacity when needed

• Because you will want more when you discover the amazing possibilities of DL ☺
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How to test Storage Performance for Deep Learning? (1)

• ImageNet (annotated image database), TensorFlow (DL framework) and ResNet-50 (neural 

network) are often used to test storage systems

• Unfortunately, the result is of very limited practical relevance, because the workload too easily 

gets compute bound

• Real-world applications of DL are often more optimized and thus have higher storage 

requirements

Source: https://developer.nvidia.com/deep-learning-performance-training-inference

• Average file size in ImageNet is about 100KB. 

• This test first converts the lots of small image files to a few large files (TF Records)

• 17,000 images per sec means 1.7GB/s of 100KB random reads for a single system of 8x A100 

GPUs

• A single HDD can do ~100 random reads per sec, so would require 170 HDDs

• A single NVMe drive can deliver 3-7GB/s for this type of access pattern

• ImageNet is only 150GB, so can be cached too easily
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How to test Storage Performance for Deep Learning? (2)

• It is generally desirable to have a flexible test for DL storage 
performance
• Without being bound by the specifics of 

ImageNet/TensorFlow/ResNet50
• To predict scalability
• To see what the maximum possible objects/sec value for 

training is
• To experiment with different file formats, e.g. directly with 

small files vs. extra conversion time to records in large files
• To see the difference between host memory read speed 

and GPU memory transfer speed

• Elbencho is a new storage system benchmark for this purpose
• Can work with GPUs 
• Supports local or shared network storage (access from 

multiple clients in parallel)
• Can test random access to large files or performance for 

lots of small files

Elbencho on github: https://github.com/breuner/elbencho

https://github.com/breuner/elbencho
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Elbencho Test Examples with/without GPU Transfer

4x HDR 

InfiniBand

16x NVMe
(PCIe Gen 3)

1x DGX A100

Test System:

• 1x Nvidia DGX A100 at University of Pisa, Italy

• 1x Quad-Server: 16x PCIe Gen3 NVMe drives & 4x HDR InfiniBand

• BeeGFS parallel file system + NVMesh NVMe RAID

Elbencho on github: https://github.com/breuner/elbencho

# 1MB random reads from large files into host memory (no GPUs involved)

dgx-a100$ elbencho -t 128 -r -s10g -b 1m --direct --rand --cpu

/mnt/beegfs/file{1..128} 

Result: 50.3 GB/s (5% CPU utilization)

# 1MB random reads via host memory into GPU memory

dgx-a100$ elbencho -t 128 -r -s10g -b 1m --direct --rand --cpu

/mnt/beegfs/file{1..128} --gpuids "0,1,2,3,4,5,6,7" --cuhostbufreg

Result: 45.7GB/s (7% CPU utilization)

# Read 512000 small files (128KB file size) into host memory (no GPUs involved)

dgx-a100$ elbencho -t 128 -r --direct -n 40 -N 100 -s 128k --cpu

/mnt/beegfs

Result: 142005 files per sec (6% CPU utilization)

# Read 512000 small files (128KB file size) via host memory into GPU memory

dgx-a100$ elbencho -t 128 -r --direct -n 40 -N 100 -s 128k --cpu

/mnt/beegfs --gpuids "0,1,2,3,4,5,6,7" --cuhostbufreg

Result: 139444 files per sec (7% CPU utilization)

https://github.com/breuner/elbencho
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What’s next for DL Storage? GPUDirect Storage (GDS)

CPU

PCIe Switch GPU

System Memory (RAM)

Data Path with GDS

Local NVMe

NIC (remote NVMe)

PCIe Switch GPU

System Memory (RAM)

Data Path without GDS

Local NVMe

NIC (remote NVMe)

CPU

Great to see that Nvidia is raising awareness for GPU storage performance to prevent 

people from noticing such issues too late.



Thank you!

And looking forward to seeing you do

great things with AI in the future!
Sven Breuner
Field CTO

sven@excelero.com


